Algebraic Topology (Fall 2018): midterm

- 1. Let M be an $(n \times n)$ matrix with positive entries. Show that M has a positive eigenvalue. (Hint: try Brouwer fixed point theorem)
- 2. Suppose a simplicial complex structure on a closed surface of Euler characteristic χ has v vertices, e edges, and f faces, which are triangles. Show that e = 3f/2, $f = 2(v \chi)$, $e = 3(v \chi)$, and $e \le v(v 1)/2$. Deduce that $6(v \chi) \le v^2 v$. For the torus, conclude that $v \ge 7$, $f \ge 14$, and $e \ge 21$.

Remark: In fact, for the torus, the minimum values (v, e, f) = (7, 14, 21) can be realized by a simplicial structure on the torus. You are not asked to show this.

3. The degree of a homeomorphism $f: \mathbb{R}^n \to \mathbb{R}^n$ can be defined as the degree of the extension of f to a homeomorphism of the one-point compactification S^n . Using this notion, show that \mathbb{R}^n is not homeomorphic to a product $X \times X$ when n is odd.

Hint: Assuming $\mathbb{R}^n = X \times X$, consider the homeomorphism f of $\mathbb{R}^n \times \mathbb{R}^n = X \times X \times X \times X$ that cyclically permutes the factors, $f(x_1, x_2, x_3, x_4) = (x_2, x_3, x_4, x_1)$.

4. Use the notion of degree to prove the fundamental theorem of algebra: every nonconstant polynomial $p(z) = z^k + c_{k-1}z^{k-1} + \cdots + c_0$ has a root in \mathbb{C} . Consider the map

$$g(z) = \frac{p(z)}{|p(z)|} \colon S^1 \to S^1.$$

Prove that if p has no root in \mathbb{C} , then g is homotopic to both a constant map and the map $z \mapsto z^k$, hence a contradiction.

5. Let (X_1, X_2, \dots, X_n) be an open covering of X and (Y_1, Y_2, \dots, Y_n) be an open covering of Y. Suppose $f: X \to Y$ is a continuous map such that $f(X_i) \subset Y_i$, and moreover the restriction

$$f: \cap_{i \in A} X_i \to \cap_{i \in A} Y_i$$

induces an isomorphism on homology for each subset $A \subset \{1, 2, \dots, n\}$. Show that $f_* \colon H_n(X) \to H_n(Y)$ is an isomorphism for all n.

- 6. The Borsuk-Ulam theorem states that: any odd continuous map $f: S^n \to S^n$ must have odd degree. Here we say f is odd if f(-x) = -f(x) for all $x \in S^n$. Let us assume the Borsuk-Ulam theorem throughout this exercise.
 - (1) Prove that there does not exist an odd continuous map $g: S^n \to S^{n-1}$. Here again g is odd means that g(-x) = -g(x).
 - (2) Prove that for every continuous map $h: S^n \to \mathbb{R}^n$, there exists a point $x \in S^n$ with h(x) = h(-x). This is often illustrated by saying that at any given moment, there are always two antipodal places on earth with equal temperatures and equal air pressures. (Hint: use part (1))

- (3) Prove that if $S^n = F_1 \cup F_2 \cup \cdots \cup F_{n+1}$ where each F_j is a closed subset of S^n , then at least one of the sets F_j contains a pair of antipodal points. (Hint: consider distance functions to F_j , and use part (2))
- (4) In previous parts, we have seen that $(1) \Longrightarrow (2) \Longrightarrow (3)$. In fact, one can also show $(3) \Longrightarrow (1)$ as follows. Observe that there exist closed subsets F_1, \dots, F_{n+1} of S^{n-1} such that $S^{n-1} = F_1 \cup F_2 \dots \cup F_{n+1}$ and no F_i contains a pair of antipodal points. (For example, consider the standard n-dimensional simplex Δ^n , which is inscribed in a sphere S^{n-1} . Now take radial projection the boundary $\partial \Delta^n$ of Δ^n to this sphere. Note that $\partial \Delta^n$ consists of (n+1) faces. Let F_i be the image of a corresponding face.) Use this observation to show that $(3) \Longrightarrow (1)$.
- (5) Here is a slightly different but equivalent version of part (3). Prove that if $S^n = A_1 \cup A_2 \cup \cdots \cup A_{n+1}$ where each A_j is either open or closed in S^n , then at least one of the sets A_j contains a pair of antipodal points. (Hint: use part (3))